Measurements of Magneto-Rayleigh-Taylor Instability Growth in Solid Liners on the 20 MA Z Facility

Experiment Design, Planning, and Analysis

<u>Daniel Sinars</u>, Stephen Slutz, Mark Herrmann, Michael Cuneo, Kyle Peterson, Ryan McBride, Roger Vesey, Charlie Nakhleh

Target Fabrication

Brent Blue*, Randy Holt*, Korbie Killebrew*, Diana Schroen*, Robert Stamm*, Kurt Tomlinson

Experiment Execution

Aaron Edens, Mike Lopez, Ian Smith, Jonathon Shores, Verle Bigman, Guy Bennett, Briggs Atherton, Mark Savage, Bill Stygar, Gordon Leifeste, John Porter with special thanks to the Z center section, Z facility, ZBL facility, VISAR, Z diagnostics, & Z hardware teams Sandia National Laboratories, Albuquerque, NM, USA * General Atomics, San Diego, CA, USA

The Rayleigh-Taylor instability develops at the boundary of fluids with dissimilar densities that are under acceleration

- RT phenomena are important in astrophysics and inertial confinement fusion (mix)
- Numerous laser- and radiationdriven studies of RT by the labs since early 1990s (e.g., B.A. Remington et al.)

The magneto-Rayleigh-Taylor instability occurs in magneticallydriven systems and is more complex than classical RT

- Magnetic field plays role analogous to the "light fluid" pushing on a "heavy" plasma
- In real materials with finite conductivity, the current diffuses into the plasma
 - Distributed magnetic pressure
 - Local plasma heating & ablation
- Some groups claim Crab Nebula structure is due to MRT rather than just RT [J.J. Hester et al., Astrophysical J. (1996)]
- Almost no data exists in the literature that can be used to validate our simulation tools (e.g., LASNEX, HYDRA, GORGON)
 - 100 ns modulated wire array experiments (B. Jones et al., PRL, 2005)
 - 6-10 μs solid liner experiments on PEGASUS (Reinovsky et al., IEEE Trans. Plasma Sci. 2002)

Crab Nebula

Problem

Magnetically-driven liners on Z can be used to create extreme conditions in the laboratory that are relevant to stockpile stewardship

Magnetically-Driven Cylindrical Implosion

$$P = \frac{B^2}{2\mu_o} = 140 \left(\frac{I_{MA}/30}{R_{mm}}\right)^2 MBar$$

140 MBar is generated by 300 eV radiation drive (e.g., NIF capsule)

We are working toward an evaluation of a new Magnetized Liner Inertial Fusion (MagLIF)* concept

- Idea: Directly drive solid liner containing fusion fuel
- An initial ~10 T axial magnetic field is applied
 - Inhibits thermal conduction losses
 - Enhances alpha particle energy deposition
 - May help stabilize implosion at late times
- During implosion, the fuel is heated using the Z-Beamlet laser (<10 kJ needed)
 - Preheating reduces the compression needed to obtain ignition temperatures to 20-30 on Z
 - Preheating reduces the implosion velocity needed to about 10 cm/μs (100 km/s—slow!)
- Simulations suggest 100 kJ yields on Z possible
- The biggest concern with the concept is whether we can maintain sufficient liner integrity until stagnation
 - The magneto-Rayleigh-Taylor instability can shred the liner during the implosion and prevent the compression of the fusion fuel

^{*} S. A. Slutz *et al.*, "Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field," Physics of Plasmas 17, 056303 (2010).

Simulations predict an optimum liner aspect ratio when the magneto-Rayleigh-Taylor instability is accounted for

- The Magneto-Rayleigh-Taylor instability degrades the yield as the aspect ratio is increased due to decreased liner ρr
- High resolution 2D and 3D simulations are needed

- Simulations of AR=6 Be liner
- Include ~60 nm surface roughness and resolve waves down to ~80 μm
- Simulations suggest wavelengths of 200-400 μm dominate near stagnation

Approach

We tested MRT growth predictions on Z using Al liners with small sinusoidal perturbations (λ=200, 400-μm)

55-60 keV pre-shot radiograph (W Kα source)

2 mm diam. W rod on axis (suppress x rays)

- Solid cylindrical liner (Al 1100 alloy)
- 6.5 mm tall, 6.34 mm diameter, AR=10
- 10 nm surface finish (diamond-turned)
- 12 sinusoidal perturbations: six 400-μm wavelength, 20-μm amplitude six 200-μm wavelength, 10-μm amplitude

Targets made by General Atomics

Our Z experiments used 2-frame 6.151 keV monochromatic crystal backlighting diagnostic

Radiograph lines of sight ±3° from horizontal

2-frame 6.151 keV Crystal Imaging

- Monochromatic (~0.5 eV bandpass)
- 15 micron resolution (edge-spread)
- Large field of view (10 mm x 4 mm)
- Debris mitigation
 - Original concept
 - S.A. Pikuz et al., RSI (1997).
 - 1.865 keV backlighter at NRL
 - Y. Aglitskiy et al., RSI (1999).
 - Explored as NIF diagnostic option
 - J.A. Koch et al., RSI (1999).
 - Single-frame 1.865 keV and 6.151 keV implemented on Z facility
 - D.B. Sinars et al., RSI (2004).
 - Two-frame 6.151 keV on Z facility
 - G.R. Bennett et al., RSI (2008).

Example 6.151 keV radiograph (Pre-shot)

The 6.151 keV radiographs have 15 µm spatial resolution

Reproducible drive currents (±1.5%) and liners enabled an 8-frame movie to be obtained over 5 shots

Laboratories

Zooming in, we see ablation, jetting, and small-scale instabilities in addition to the seeded instability growth

Zooming in, we see ablation, jetting, and small-scale instabilities in addition to the seeded instability growth

Simulated density map with rB_θ contours

Zooming in, we see ablation, jetting, and small-scale instabilities in addition to the seeded instability growth

Ablated material coalesces in valleys to form jets visible in the radiographs

Simulated density map with rB_{θ} contours

LASNEX: $T_{jets} \sim 30 \text{ eV}$; $T_{valley} \sim 100 \text{ eV}$

Zooming in, we see ablation, jetting, and small-scale instabilities in addition to the seeded instability growth

Small-scale instabilities appear to have similar character to instabilities growing on initially "smooth" regions

The data is being used to benchmark our modeling & simulation tools

Growth rate from linear theory

$$\Gamma^2 = kg$$

Calculate *g* using I(t), R(t) (red)

$$\Gamma^2 = k \frac{\mu_0}{8\pi^2} \frac{I^2}{R^2} \frac{1}{\rho(\Delta r)}$$

Two additional images were obtained using 1-frame, 0° backlighter of unperturbed regions and regions seeded with small (λ =25-200 μ m) perturbations

Our LASNEX simulations capture the ablation and jetting well down to ~50 μm wavelength scales

Note: We have not matched these features in HYDRA or GORGON yet

The instabilities in the perturbed regions are highly-correlated azimuthally in the late frame

The instabilities in the flat region at that time appear to be only partially correlated along azimuthal direction

Our LASNEX simulations capture the perturbation amplitude growth down to ~50 μm wavelength scales

Penetrating 6.151 keV radiographs of Be liners allow us to observe both the inner and outer liner surfaces

0.4

0.2

0.0

-2

Top-down view of x-ray path through load region

Backlighter view of axis blocked by two posts in the return current can

Object Dist. (mm)

2

We obtained two images of a Be liner during the implosion, which were Abel-inverted to get a density map

The results of the Abel inversion are consistent with the initial mass/length of the liner, show pmax~4.1 g/cc

The high-quality data we have obtained to date is serving as a useful benchmark for future calculations

- We have obtained the first high-quality radiography data of solid liner implosions driven by <1 μsecond generators
- The data show significant ablation and jetting features during the earliest stages when linear MRT theory might otherwise apply
- The data is of sufficient quality that it can be (and has already been) used to benchmark Magneto-Hydrodynamic codes (e.g., LASNEX, HYDRA, GORGON, etc.)
 - These are some of the fundamental physics package design tools used by the stockpile stewardship program
- Comparisons against LASNEX simulations
 - Can capture many of the large-scale details of the MRT growth
 - At smallest scales (~50 μm or less) the agreement is worse (due to perfect 2-D symmetry and/or shorting?)
 - How important is it to capture smallest-wavelength scales?

Our success so far in modeling the MRT instability gives us hope that >100 kJ yield predictions are realizable

- We have started collecting data with Be liners in which we can see changes in the areal density and integrity of the liner
- We will create axial magnetic fields of ~0.5 T using permanent magnets in 2011. Pulsed coils for >10 T operation have been designed and will be prototyped in late 2010, early 2011
- We also plan to work on laser preheat experiments using ZBL
- This work may soon enable the Z facility to produce >100 kJ yields in a laboratory setting for stockpile stewardship science

